Using AI in Data Monetization
AI refers to the ability of machines to perform human-like cognitive tasks.[foot]See Hind Benbya, Thomas H. Davenport, and Stella Pachidi, “Special Issue Editorial: Artificial Intelligence in Organizations: Current State and Future Opportunities,” MIS Quarterly Executive 19, no. 4 (December 2020), https://aisel.aisnet.org/misqe/vol19/iss4/4.[/foot] Since 2019, MIT CISR researchers have been studying deployed data monetization initiatives that rely on machine learning and predictive algorithms, commonly referred to as predictive AI.[foot]This research draws on a Q1 to Q2 2019 asynchronous discussion about AI-related challenges with fifty-three data executives from the MIT CISR Data Research Advisory Board; more than one hundred structured interviews with AI professionals regarding fifty-two AI projects from Q3 2019 to Q2 2020; and ten AI project narratives published by MIT CISR between 2020 and 2023.[/foot] Such initiatives use large data repositories to recognize patterns across time, draw inferences, and predict outcomes and future trends. For example, the Australian Taxation Office (ATO) used machine learning, neural nets, and decision trees to understand citizen tax-filing behaviors and produce respectful nudges that helped citizens abide by Australia’s work-related expense policies. In 2018, the nudging resulted in AUD$113 million in changed claim amounts.[foot]I. A. Someh, B. H. Wixom, and R. W. Gregory, “The Australian Taxation Office: Creating Value with Advanced Analytics,” MIT CISR Working Paper No. 447, November 2020, https://cisr.mit.edu/publication/MIT_CISRwp447_ATOAdvancedAnalytics_SomehWixomGregory.[/foot]
In 2023, we began exploring data monetization initiatives that rely on generative AI.[foot]This research draws on two asynchronous generative AI discussions (Q3 2023, N=35; Q1 2024, N=34) regarding investments and capabilities and roles and skills, respectively, with data executives from the MIT CISR Data Research Advisory Board. It also draws on in-progress case studies with large organizations in the publishing, building materials, and equipment manufacturing industries.[/foot] This type of AI analyzes vast amounts of text or image data to discern patterns in them. Using these patterns, generative AI can create new text, software code, images, or videos, usually in response to user prompts. Organizations are now beginning to openly discuss data monetization initiative deployments that include generative AI technologies. For example, used vehicle retailer CarMax reported using OpenAI’s ChatGPT chatbot to help aggregate customer reviews and other car information from multiple data sets to create helpful, easy-to-read summaries about individual used cars for its online shoppers. At any point in time, CarMax has on average 50,000 cars on its website, so to produce such content without AI the company would require hundreds of content writers and years of time; using ChatGPT, the company’s content team can generate summaries in hours.[foot]Paula Rooney, “CarMax drives business value with GPT-3.5,” CIO, May 5, 2023, https://www.cio.com/article/475487/carmax-drives-business-value-with-gpt-3-5.html; Hayete Gallot and Shamim Mohammad, “Taking the car-buying experience to the max with AI,” January 2, 2024, in Pivotal with Hayete Gallot, produced by Larj Media, podcast, MP3 audio, https://podcasts.apple.com/us/podcast/taking-the-car-buying-experience-to-the-max-with-ai/id1667013760?i=1000640365455.[/foot]
Big advancements in machine learning, generative tools, and other AI technologies inspire big investments when leaders believe the technologies can help satisfy pent-up demand for solutions that previously seemed out of reach. However, there is a lot to learn about novel technologies before we can properly manage them. In this year’s MIT CISR research, we are studying predictive and generative AI from several angles. This briefing is the first in a series; in future briefings we will present management advice specific to machine learning and generative tools. For now, we present three principles supported by our data monetization research to guide business leaders when making AI investments of any kind: invest in practices that build capabilities required for AI, involve all your people in your AI journey, and focus on realizing value from your AI projects.